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Abstract 

The solution of the general form of the integral 
transport equation is expanded in terms of orders of 
scattering. The method is applied to the analysis of 
multiply Bragg-reflected neutrons in mosaic crystals, 
making evident the vertical broadening of the reflected 
beam as well as the consequential neutron leakage in 
crystal spectrometers. A wavelength-dependent effec- 
tive vertical mosaic spread of the crystal is defined as a 
function of the mean number of reflections. A detailed 
mathematical treatment is performed within the frames 
of an infinite-plane slab model (both in reflection and in 
transmission geometry) largely used in the literature in 
the studies of crystal reflectivity. Experimental results 
are also presented. 

1. Introduction 

The study of multiple-scattering effects in thermal- 
neutron scattering experiments has attracted a con- 
tinued and sustained interest caused by: 

(i) the necessity to make corrections for them in 
determining scattering laws and crystallographic form 
factors; 

(ii) the need to make greater use of single-crystal 
monochromators, especially at low-to-medium-flux 
reactors. 

Up-to-date reviews of the former aspect of the 
subject have been given by Sears (1975) and Becker & 
Coppens (1974). The latter has been treated in some 
detail by Werner & Arrott (1965) and by Werner, 
Arrott, King & Kendrick (1966). 

In the present paper, we recast the general integral 
transport equation in an operator form, proper for 
expansion in terms of orders of scattering. This 
approach generalizes that of Werner & Arrott (1965) 
who set up a pair of coupled integral equations valid 
only for Bragg scattering. 

The method is applied to the analysis of neutron 
monochromation by reflection on ideally imperfect 
crystals, both in reflection (Bacon & Lowde, 1948) and 
in transmission (Dietrich & Als-Nielsen, 1965) 
geometries. 

0567-7394/80/040510-10501.00 

Decomposition in terms of numbers of scatterings 
has enabled us to make evident the effect of vertical 
broadening of the neutron beam caused by multiple 
Bragg reflections. Under some experimental cir- 
cumstances, especially at large Bragg angles, this effect 
could become very important, producing leakage of 
neutrons out of the experimental device. 

Experimental results confirming the theoretical pre- 
dictions are also presented. 

2. General analysis in terms of orders of scattering 

The neutron field is described in the present treatment 
by ~(r,k), the k density of the neutron vectorial flux. 
So, the vectorial flux in r, through a unit surface normal 
to n, F(r,n), is 

F(r,n) = f ~P(r,k) (£1. n)dk, (1) 

where f~ = k/k and dk = k2dkdO;  dO is an 
infinitesimal solid angle centered on f~. 

The scatterer is characterized by the following 
macroscopic cross sections: 

~/a ~ -  total cross section for nuclear absorption; 

d,us 

dk: 
= differential scattering cross section; 

f dgs gs = ~ dk :=  total scattering cross section: 

where k:is the wave vector of a scattered neutron. 
Let us consider a convex sample of arbitrary shape 

(Fig. 1). Let 10(r0) be the linear coordinate of the point 
A (r0) measured along k 0, relative to an arbitrary origin 
and/o(r~) the coordinate of the point X(rl) lying on k o. 
At the same time,/l(r~) is the linear coordinate of X(r  1) 
measured along a certain wave vector k~, intersecting 
k 0 at X(rl); /0(r0.F) and l~(rl.F) are the linear coordin- 
ates of the boundary points B(ro.F) and C(rl.~), 
respectively. 
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The increase of the k density of the neutron flux at 
the point 10(r~) due to neutrons passing from different 
wave vector states lk~) to Iko) by scattering along the 
segment [ lo(rl) - dlo(h), lo(h)] is given by 

dCs[lo(r~),ko]= dlo(r~) f dkl d~ts qb[/l(rx), kl ]. (2) 
dk o 

We suppose that d/o(r~) is large enough to include 
structural and dynamical effects but, on the other hand, 
small enough to involve single scattering only. 

Equation (2) may be rewritten, 

d ~s[ lo(rd, ko] = dlo(r~). S(ko, kl) ¢[ 11(rl), kl], 
where 

d#s 
,~(ko, kl) = f dk, (3) 

dk---~ , I  

is the scattering operator. 
The neutron group being at a certain instant of time 

at the point A in the I ko~ state is composed of the 
neutrons entering the sample at point B in the same 
state and covering the space BA without interactions, 
to which there are added the neutrons passing from 
different I kl) states to the I k0) state by scattering 
along the line BA, afterwards being transmitted at A, 
i.e. 

¢~[/o(ro),kol = exp {--~r(ko) [/o(ro) --/o(ro.e)l } 
r 0 

x ~[lo(ro.F),k o] + fd/o(rl) 
r0.F 

× exp {--/tr(ko) [/o(ro) -- lo(rx)] } 

× ,~(ko, kl) ~[/~(r~),k~], (4) 
where 

/tT(ko) =/Za(k0)  + / t s ( k  o) 

is the total macroscopic cross section. 
Introducing the notation, 

Z[ ll(r~), kt] = exp [/zr(k t) l~(rt)] ¢~[ li(r~, ki], 

ko 

c 

o 
k, 

Fig. 1. Diagram of a convex sample of arbitrary shave used in the 
derivation of the general transport equation. 

we get from (4) 

X[ lo(ro), ko ] 
r0 

= X[ lo(ro, F),ko ] + f dlo(h) exp [/zr(k0) lo(r~)] S(ko, kl) 
ro, F 

x exp [--/Zr(k,)/,(r,)]X[/,(r,),k,]. (5) 

Equation (5) may be rewritten as 

( i - -  f~);~t/o(ro),ko] = X[/0(ro.r),k0], (6) 

where the linear operator I'~ has the following 
definition: 

r! 
f-.= f dl:(r~exp[/~r(k:) l:(r~] 

r:,~ 

× f;(k:,kt)exp[-lzr(kt)lt(ri)]. (7) 

In the above equation, i and f denote the initial and 
final neutron states. 

Expanding the operator ( i -  f_,)-~, we find for the 
solution of (6) 

GO 

Z[10(ro),ko] = y f, nZ[ln(rn, e),kn], (8) 
n = 0  

where f :  means n successive applications of the 
operator I_,. 

The interpretation of (8) is straightforward: the nth 
term contains the contribution to neutron flux of the 
neutrons reaching the point A in the I k0~ state after n 
successive scatterings, to say nothing about their 
trajectories and intermediate states. The initial states of 
these neutrons are described by I k~ .  

3. Multiply Bragg-reflected neutrons in ideally imper- 
fect crystals 

Later on, we shall focus our attention on multiple 
elastic coherent scattering, only. The 'background' 
caused by incoherent and/or inelastic interactions 
needs a separate treatment and will not be considered 
here. Accordingly, we shall operate with a differential 
scattering cross section, d /zJdk: ,  corresponding to 
Bragg scattering. At the same time, the total cross 
section is separated into two components: 

/t r = /z  s + #, 

where /z B is the total macroscopic elastic coherent 
scattering cross section while/z corresponds to all the 
other neutron-crystal interactions. 

Fig. 2 shows a reference frame which contains in the 
horizontal plane the most probable wave vectors for the 
incoming and reflected neutron beams, k 1 and k F, 
respectively. The | axis is antiparal!el to the most 
probable orientation of a certain reciprocal vector of 
the crystal lattice. (k~) and (k:) are the projections, on 
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the horizontal plane of k I and kf, the wave vectors 
of a certain neutron before and after reflection at a 
crystalline plane, the horizontal and vertical mosaic 
angles of which are tp and ~. Yi and Yf are the 
corresponding horizontal divergence angles. Ji and J f  
are the vertical divergence angles measured between k i 
and kf and their projections on the horizontal plane. 0 s 
is the most probable Bragg angle. 

In this particular reference frame, assuming normal 
distribution functions, wn(tp) and wz(~, ), for horizontal 
and vertical mosaic angles, the scattering operator may 
be expressed (see Appendix A) as follows: 

~(kf, k.r ) = Qc 1 
V/~r/u V/-8-~r/rlsin OBI 

f dkidyidJ l exp [-(Yi + Yf)Z/8rfH ] × 

× exp [--(Ji -- Jf)z/8rl~ " sinz OB] 3(kt -- k f) 

x 6(y I + y/- 2~, (9) 

where Q~ is the well-known crystallographic quantity 
given in (A7) while r/H and r/v are the standard 
deviations of WH(tp) and wv(~,); the variable ~ is defined 
in (,49). 

Owing to J(k i -  k f )  in the above equation, the 
operator S(kf, k~) commutes with the exponentials in 
(7) and, consequently, (8) takes the following form: 

oO 
X[lo(ro),k0] = Z T=g=2f[l=(r=.~),k=], (10) 

n----O 

where 
r o 

T n = f d/0(r,) exp {at[/0(rl) --/,(rl)] } 
ro.F 

r l  

x f d/l(r 2) exp f a r [ / l ( r z )  - -  12(r2)1} . . .  
1"1, F 

r n - t  

x f dln_,(rn)eX p {ar[ ln_t (rn)-  l.(rn)l}. 
r t l  - t . F  

(11) 

~,~ , %)  

i II' 

i (kl) 
Fig. 2. Vector diagram in the horizontal plane illustrating the 

diffraction in a mosaic crystal. 

T n takes into account the flux changes along the zig-zag 
trajectories in the crystal of the n-times reflected 
neutrons. The remark that the total Bragg-scattering 
cross section is essentially different from zero only for 
k i and k z lying in narrow angular ranges around k I and 
k F [see (A8)] justifies the approximation in which the 
linear coordinates li(rj) are measured along the most 
probable wave vectors. 

Furthermore, the action of the function 
J(Yi + Yf - 2 0  in (9) leads to 

a~ 
gn(k0,kn) = 8X/~r/vlsin OBI f dk,, dy,, dJ n 

x exp { - (8 .  - g0)2/8nrfv sin z OB} 3(kn -- ko) 

x J[Y0 + (-1)~(~ - Y . ) -  ~]. (12) 

From the above equation, it is worth noting that after 
an even number of reflections (transmitted beam) the 
horizontal divergence angle has the same value as 
before the first reflection. If n is odd (diffracted beam), 
the horizontal divergence angle is modified and 
correlated with the magnitude of the wave vector 
through (A9). 

On the other hand, as we can see in (A 5), the vertical 
component of the neutron trajectory is independent of 
the horizontal one as well as of the deviations of the 
magnitude of the wave vector from the most probable 
value. As a consequence, if in the incoming beam the 
vertical divergence angles are not correlated with the 
horizontal divergence angles and with the magnitude of 
the wave vector, we can write 

#[li(ri),ki, Yi, J l] = #[li(ri),ki, Yilv(g ~ (13) 

for any value of i. 
Then, the observation that according to (A8) as  is 

not dependent on the vertical divergence angle or 
mosaic spread, leads to the following equation: 

g2j+l @[lzy+ 1(r21 + 1.F), k2j+ 1, Y2/+ 1 ] V(g2j+ 1) 

where 

V(~o) = 

= a~  +l ~[/2j+I(rz/+t.F), k0,2~-- Y0l v(30), (14) 

V/8zc(2j + 1)~/vl sin OBI 

X f d~2]+l exp [-- 
g. 

X V(~2j+I  ). 

(g2j+,  - g0) z ] 

8(2j  + 1)rfv sin 2 0B ] 
(15) 

Furthermore, from the obvious relation 

f v(80) dJ0 = f v(t52j + ,) dJ2j + ,, 

we conclude that even if the vertical angular distri- 
bution of neutrons could be modified by reflection, it 
does not influence the crystal reflectivity. 
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The reflectivity operator 

If ro is a boundary point at which the diffracted 
neutrons are emerging from the crystal, we write 

oo 

ql[lo(ro), ko, 7'o] = ~ O2j+l[10(ro),ko, 7'o], 
J = 0  

where 

qli2j + l[ lo(ro), ko, 7'0] 

: R2 j  + 1 ~l[ 121 + l ( r2  / + 1, r ) ,  k2 j  + 1' 7'2j + 1 ] V ( J 2 J  + 1) 

is the flux density of the (2j + 1)-times reflected neu- 
trons. 

li,2j÷~ is the operator of the partial reflectivity, 
defined by 

l ~ 2 j  + 1 : f d6o exp [-grlo(ro)] 

x T2j+lexp [#r/2j+l(r2j÷l,F)]S2S+l. (16) 

It acts on the angular variables of ql[12S+~(r2j+l.F), 
kzs + ~] and has the proper values Rzs + 1, i.e. 

P'~J+ l 41[121+ l (r2s+ l,F), k2/+ I I 

= R2S+I cli[12S+l(r2j+l,v),ko,2~ - 7'0], (17) 

where 

R2s + l = exp [--/XT lo(ro)] #n zj+ 1 

X exp I/UTI2s+I(r2j+~,F)I T2S+~. (18) 

Through/x  n, according to (A8), R zj +1 is a function 
of the variable ~. 

Evidently, the operator of the total reflectivity has 
the following definition: 

oo 
1i.= y. l~2j+,. (19) 

J=O 

The mean  number  o f  reflections 

The mean number of reflections in the diffracted 
beam is defined by the following equation: 

oo 

( n ) =  Z (2 j  + 1)Fzs+~[lo(ro),no]/F[lo(ro),no], (20) 
J = 0  

where 

F2y + l[/o(ro), no] = f O2y + l[ lo(ro), ko] (l'l. no) dk o 

according to (1) is the partial vectorial flux of the 
(2 j  + 1)-fold reflected beam; n o is parallel to the most 
probable direction in the emerging beam. 

Assuming a uniform and collimated incoming beam, 
with ao and /70 horizontal and vertical collimation 
angles, i .e. 

clJ[ 12j + l(r2j + 1, F), k21 + 1] 

= ql(k2.# + ,) exp ( - - ~ j .  1/20~ exp (--~y+ 1/2ffo ), 

we get 
oo 

( n ) =  Y. (2 j  + 1) f R2s+,(O d ~ / f  R ( O  d~j 
j=o 

oo 

= ~ (2 j  + l ) / 2 j + l ,  (21) 
j=0 

where I2j+~, the ratio of neutrons undergoing (2j + 1) 
reflections, is nothing but the relative value of the 
integrated partial reflectivity. 

4. Reflectlvity o f  a plane infinite slab in reflection 
geometry  

The unsymmetrical reflection case, for an infinite plane 
slab of thickness t is illustrated in Fig. 3 which is 
obtained from Fig. 2 by drawing in the crystal faces. Jfr 
denotes the angle between n e (the inward normal of the 
crystal surface) and the normal to the most probable 
reflecting planes under consideration. 7'0 and 7'n are the 
direction cosines of k I and k e with respect to nc: 

7'0 = sin (0 B -- Xr), 

7'n = - s i n  (0B + X)- 

Remembering that I kn) denotes the initial wave- 
vector state of neutrons attaining the final I ko) state 
after n successive reflections, we write 

( k 2 j ) m o s t  probable : kl~' 

( k 2 j  + 1)most probable = k p  (22) 
The geometry of the problem allows us to use only 

one spatial coordinate, x,  measured along n c. Then the 
linear coordinates of a certain point x,  measured along 
k2j o r  k2j + 1, are given by 

ley(X ) = (x  -- t)/I 7'H I , 

12j+ I(X ) = X /  i 7'01 . (23) 

n c | 

Fig. 3. The most probable path in a plane-slab crystal in reflection 
geometry. 
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In the general formulae of the previous sections every 
r.  is replaced by x . ,  while 

Xo= 0 

and 
u o Ul  u 0 

Y2s+l(U, Uo) = f d u , e  -u '  f du2e u2 f d u 3 e - U ' . . .  
tt 0 u 2 

X2j. F = t ( j  = 1, 2 , . . . ) ,  

where 

X2S + I.F = O ( j  = O, 1 . . . .  ). 

Then, from (11), (18) and (23), 

/t~,'+' 
R2J + , =  i ~ + l ~ l a 2 J + l  Y2J +l(O'u°) '  

( 1 1 )  

a= # r  lYol i l l  , 

(24) 

l / 2 j -  1 I/0 

• . .  f duz ,  e"'l  f du2s+le-"~'+'. 
0 u2j  

From the above equation we can easily obtain the 
recurrence relation 

1/0 U t 

Y2j+I(U, Uo) = f d u ' e - " '  f d u " e u " Y 2 j _ l ( U " , U o )  (26) 
u 0 

as well as 

Yi(u, u o) = e-" -- e-"o. 

u i = a x  i ( i = 1 , 2  . . . .  ), 

u o = a t  

f2J+l 
_ I I I I i I 

- ~R = 0.005 

//7--- 

[ff-2 

/0 -~ -- 

f 2~+t 

l& 

¢0 

, , t  I 

/ 

/ 

, <j 
I ~ I R ~  

3 

/ +;,, 

111#3 /3 10 ~" 

I I I I  I 

' 13'1 t 

I 
' I 0  I0 2 10 ~ p 70" 

(25) 
In what follows we look for a solution of (26) of the 

following form: 

Y2j+ ,(u, u 0) = Pj(u) e -u  - P s ( u o ) e  -uo + O j ( u ) -  Qs(u0), 

(27) 
I 12~+1 

I I ' ' ' 1  ' ~ ' I 'l H 
O02 d 

f 5 - 

lg 

2l,,,,I,1,1,1,11 '12  
1 10 102 103 

Izj , l  (b) 
"- ~ R  = c.Q 

13 10~ 

IO (d) lgz 103 /'3 lO~ 

Fig. 4. (a)-(d) Relative integrated partial reflectivities in reflection geometry, corresponding to several values of the reflection order at a 
given relative thickness r R. 
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where 

with 

J J 
Pj(u)= ~. A/Ju t, Qj(u)= ~, B/ju t, (28)  

1=0 1=0 

A~= 1 and AI -B~o=BI=O.  

Introducing (27) and (28) into (26), we get the 
following recurrence relations: 

j - 1  

Ag= Pj_i(uo)e-"o+ Qj_l(uo) + Z A~ - lm! 
m=O 

j - - 1  

- ~, (-1)mB~-lmt; 
m=O 

j - i  ( i + m - 1 ) !  
a / j  : Z aJ-ll+m-I (i = 1, 2, .. .); 

m=o i! 

BJ0=0; (29) 

we get 

a =Bwn(~;  fl= Bwn(O); 

u 0 = 2rR(1 + a) (33) 

and the reflectivity takes the following form: 

a ] 2J+l 

R2 j+ l=  2(1 + a) Y2J+l(O'u°)" (34) 

Figs. 4(a)-(d) illustrate 12j+l' the relative values of 
the integrated partial reflectivities, vs fl, for several 
values of the parameters r R. As expected, the greater 
the thickness of the crystal, the greater the amount of 
multiply reflected neutrons. 

The mean number of reflections, defined by (21), is 
plotted in Fig. 5. 

The calculations have been carried out with the help 
of an IBM 370/135 computer. 

j--1 
BJl=Pl_t(uo)e-U°+ Qj_l(uo)- ~ (--1)mBJm-lm!; 

m=O 

y-I (i + m -  1)l 
B / J = -  X (--I) m BJ-I l + m - 1  

m=0 it 

(i = 2, 3 , . . . ) .  

For u o = oo we assume the simple form: 

Y2y+l(u, oo) = Pj(u)e -u, (30) 

for which one obtains 

(2 j - -  0t 
A t =  (i + 1) ilO'--i)! O" + 1)l" (31) 

For the symmetric reflection (; tr= 0), introducing 
the notation: 

sin 0 n 
t~ - - -  - penetration depth in the absence of 

g Bragg scattering, in reflection 
geometry; 

r R = t/t~; B = Qc/g; (32) 

5. Refleetivity of  a plane infinite slab in transmission 
geometry 

Fig. 6 illustrates the case of unsymmetric transmission 
geometry. Xt denotes the angle between n c and the most 
probable reflecting planes. 

The direction cosines of k I and k F are now given by 

~'0 = c o s  (eB - Zt), 

~,. = c o s  (oB + z , ) .  

Equations (22) and (25) are still valid, while 

12j(x) =x / lyn l  ( j = O ,  1, . . . ) ,  

( 3 5 )  

and 

12j+ 1 ( x )  = x/I y01 

X 0 = t,  X j, F = O. 

(36) 

(37) 

i , , i i ~ I t ]  I i t l l l l i [  i i I t i , l i [  

<n> R 

/ _ ,I 
/0 /0 z /03 ¢0~ 

Fig. 5. The mean number of reflections in the reflection geometry, 
corresponding to several values of the relative thickness r R. 

"Nk, 

nc J 

Fig. 6. The most probable path in a plane-slab crystal in 
transmission geometry. 
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Consequently, according to (11), (18) and (37), we 
obtain 

laZn T M  exp ( - - P r t / T n  ) 
R 2 j + I  = [ ~{!+ 1 ~do] o; 2j+ i r 2 j + l ( u o )  , (38) 

where 
/gO 1/1 

Y2j+ I(U0) = f dUl e-", f du2 el / , . . .  
o o 

!121-1 I/21 
• . .  f du2je"2J f du2j+~e-1/~+~. (39) 

0 0 

The case of unsymmetrical transmission is con- 
sidered in Appendix B. 

In the symmetrical geometry, a - 0 and 

R2j+I = e-(~+Y)yal+I/(2j + 1)t, (40) 

where 
y = a r  r,  r r = t / t  r ,  (40') 

t r = cos 0B/# = penetration depth in the absence of 
Bragg scattering, in transmission 
geometry. 

From (19) and (40) one obtains for the total 
reflectivity 

R = e - ( r~+y)  sinh y, 

i.e. the expression given by Dietrich & Als-Nielsen 
(1965) for the symmetric case. 

f 2~+1 
I I I I I 

200 
/ 

IU IL/z 

500 _ 

1000 
- "  ~ - 

I , , 1 1 1  
103 

(2~+1) 
Fig. 7. Relative partial integrated reflectivities in transmission 

geometry vs reflecting order, corresponding to several values of 
Y0. Even if this function is defined only for odd-integer values on 
the abscissa, the points corresponding to the same Y0 are joined 
for the clearness of the diagram by a solid line. 

The partial reflectivities have now some peculiar 
properties. So, as can be easily obtained from (40), 
when 

2 j  + 1 < Y0 = flrr, 

the partial reflectivity is split with respect to the 
variable ~, having two symmetric maxima for 

~2j+1= +tln 21n 2 j +  1 

When 2 j  + 1 > Yo, the partial reflectivity is a clockwise 
function centered on ~ =  0, as well as the total 
reflectivity. 

In Fig. 7 are shown I2j+l, the integrated partial 
reflectivities, vs reflecting order, for several values of Y0- 
Even if these functions are defined only for odd-integer 
values on the abscissa, the points corresponding to the 
same Y0 are joined, for the clearness of the diagram, by 
a solid line. It is worth noting the presence of maxima 
in the dependency of integrated partial reflectivities on 
the reflecting order; the more pronounced, the greater 
the values of Y0. 

In Fig. 8 is plotted, as a function of Y0, the mean 
number of reflections, given in this case by 

( n ) r  = f e -y y cosh y d ~/ f  e -y sinh y d ~. 

6. Vertical  broadening  o f  the beam.  Neutron  leakage  

It follows from (15) that, in the case of a vertically 
collimated incoming beam, the distribution function of 
the vertical divergence angles of (2j  + 1)-times reflec- 
ted neutrons is given by 

V2j+I(¢~0) = /~0[~ 2 +4(2 j  + 1) ~/2 sin 2 0B ]-1/2 

x exp {--~o2/[2ffo + 8(2j  + 1)r/2 sin 2 0B]} 

so that (41) 

oo 
q~[lo(ro)]V((5o)= ~ ~Zj+l[lo(ro)lvzi+l(C~o). (42) 

J=0 

/0' 

[O"-- 

tO - 

-- 

1 i 

! T' l 10 lgZ ~o I03 
Fig. 8. The mean number of reflections in the transmission 

geometry. 
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Assuming that v(~0) is a Gaussian distribution, from 
(41), (42) and the definition of the mean number of 
reflections, (n), we obtain 

v(J0) = fl0[~ + 4(n)r/~ sin z 0B] -v2 

x exp{-J~/[2fl~ + 8(n)  r/~sin 2 0B]}. (43) 

Hence, the multiple Bragg reflections induce, when 
(n)  takes large values, a pronounced vertical broaden- 
ing of the diffracted beam, accompanied by a com- 
plementary diminution of v(0). 

A wavelength-dependent 'effective vertical mosaic 
spread' of the crystal may be defined by 

r/~u= (~/c~ r/r. (44) 

This is the quantity which must be used instead of ~/r 
in calculating the resolution function of crystal 
spectrometers. 

In order to estimate how important the vertical 
broadening is likely to be quantitatively, we have 
calculated the ratio between the instrumental intensity 
obtained for several values of (n)  and that correspond- 
ing to ( n ) =  1, when this effect is neglected. For a 
triple-axis neutron spectrometer, with a double-crystal 
monochromator unit, in an elastic-diffraction set-up, in 
the case of a cross section (and resolution function) iso- 
tropic in Q-space this ratio is given by (Grabcev, 1973) 

in [ (e2+ 1)(2C2+1) .1,/2 

I-" T = (C z +(n) ) (2c  2 + (n))]  ' (45) 

where 
e = fl0/2r/pl sin 0hi. 

We have assumed identical single crystals and vertical 
collimation angles. 

In Fig. 9 In / I  1 is shown, calculated as a function of 
(n),  for several values of the parameter c. Taking into 
account that values of c of about 1 and of (n)  greater 
than 2 are usual, we conclude that the neutron leakage 
caused by the vertical broadening of the reflected beam 

I I IIII 
01 2 3 t~ 5 678g/0 20 30 6050 

<n> 

Fig. 9. Diagram illustrating the neutron leakage caused by multiple 
Bragg reflections in monochromator and analyzer crystals of a 
triple-axis spectrometer. 

may involve important losses of experimental intensity. 
This is in agreement with the results of Riste (1970) 
and Nunes & Shirane (1971), who by using vertically 
bent crystals have compensated for the vertical 
broadening (or a part of it) by spatial focusing, 
attaining essential gains of luminosity. The neutron 
leakage is expected to be very pronounced in back- 
reflection spectrometers. 

7. Experimental results. Discussion 

The mean number of reflections may be determined 
experimentally from the width of a vertical scanning, 
performed by rotating the crystal about the horizontal j 
axis contained in the reflecting plane (Fig. 2), in a white 
neutron beam. 

It is easy to show that when ~,1 is the vertical 
missetting angle, the vertical divergence angle of a 
reflected neutron becomes 

g0 = 3 0 -  2~'1 sin On. 
Therefore, if t0 and 131 are the vertical collimation 

angles of the collimators defining the incoming and 
reflected beams, taking into account (43) we obtain for 

• the intensity of a vertical scan the following equation: 

I(~1 ) ,'~ yv(g o - 2~q sin 0s)exp ( - ~ / 2 ~ ) d f i  o 

: ~ / ~ # 0 / ~ 1 [ ~  2 + ~1 + 4(n)  r/Zv sin 2 0S] -1/2 

× exp {-4~,~ sin z 0a 

x [2fl~ + 2fl~ + 8 (n)  r/r sinZ0B]-x}. (46) 

Introducing widths instead of standard deviations, 
i.e. 

b i = V / 8 1 n 2 f l ,  and m r = V / 8 1 n 2 r / r ,  

the width of a vertical scan is given by 

l =  [l~ + (n)m~,] v2, (47) 

where 

(b~o + hi)  v'~ 
lo= 21sin RBI 

is the resolution width of the experimental set-up. It 
may be measured with a perfect crystal. 

In order to obtain a suitable value of l o we have put 
b o = b I = 10' and have performed the measurements of 
the vertical scans at large Bragg angles. 

The experimental values of (n)  obtained for 
C u ( l l l ) ,  Zn(002) and P b ( l l l )  single crystals, in 
symmetric reflection geometry, are compared with 
theoretical values, (n)theor., in Table 1. Besides crystal 
thickness and horizontal mosaic spread, the reflectivity 
is defined in terms of intrinsic material parameters B, t R 
and t r from (32) and (40'). In calculating (n)theor" we 
have used the wavelength-dependent values of B and t R 
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Table 1. The experimental values of the mean number 
of reflections obtained from the widths of vertical scans 

in reflection geometry. 

The relative errors are about 5%. (n)theor" has been calculated 
within the infinite geometry model. 

Crystal 2 (A) (n)exp" (n)theor" 

Cu(lll) 2.92 1.4 2.6 
145 x 52 x 100 mm 3.17 1.6 2.8 

3.37 1.9 3.1 
3.52 2.3 3.5 
3.75 2.7 4.9 

Zn(002) 2.02 1.5 2.1 
10 x 65 x 142 mm 3.46 2.5 3.6 

3.80 2.8 4.0 
4.05 2.9 4.2 
4.28 3.2 5.0 

Pb(lll) 2.85 1.5 2.8 
11 x 60 x 163 mm 4.47 3.6 4.9 

4.81 3.9 6.1 
5.13 4.3 7.2 

defined in terms of experimentally determined /~ 
(Grabcev, 1979). 

We can see in Table 1 that, as well as in the case of 
experimental determination of peak and integrated 
reflectivities (Popovici, Gheorghiu & Gelberg, 1969; 
Dorner, 1971; Malik, 1976), the experimental values of 
(n)  are smaller than those predicted by theory. These 
differences are partially explained by the fact that 
experiments are carried out with finite beams and 
bounded crystals while the theoretical values are 
calculated within the infinite geometry. 

Nevertheless, the customary model of infinite plates 
is largely used in the literature in analyzing the crystal 
reflectivity because it provides analytical solutions easy 
to handle with transparent physical meaning. That is 
why, in order to outline the salient features of multiple 
Bragg reflections, we have preferred to use this model, 
the calculation of the exact numerical value of (n )  for a 
certain experimental situation being beyond the scope 
of the present paper. 

In particular cases with finite geometries our method 
is similar to that of Werner, Arrott,  King & Kendrick 
(1966), but taking into account at the same time the 
vertical divergence angles and mosaic spread. 

method may be applied to include vertical broadening 
in the corrections for secondary extinction. 

It has been shown that the crystal reflectivity 
depends only on the horizontal mosaic spread, while 
the vertical mosaic spread determines solely the 
distribution of vertical divergence angles in the diffrac- 
ted beam. 

Beyond the rather academic interest for comparing 
relative reflectivities in terms of reflecting orders, we 
succeeded in calculating the mean number of reflections 
defining the effective vertical mosaic spread of the 
crystal, and from this the resolution function of crystal 
spectrometers. 

The present paper provides supplementary argu- 
ments to support Freund's  (1975)proposal  concerning 
the use of single-crystal monochromators  with aniso- 
tropic mosaic structure: a suitable horizontal mosaic 
spread will ensure the most convenient compromise 
between resolution and intensity while a small vertical 
mosaic spread will avoid an exaggerated broadening of 
the reflected beam. 

A P P E N D I X  .4 
Elastic-coherent-scatterlng cross section of  mosaic  

crystals 

The elastic-coherent-scattering cross section of perfect 
crystals is given by (Cassels, 1950) 

dflBo (27C)31FI 2 
- V~k~ ~ c~(Q + 2~z )~ (k , -k f ) ,  (A1) dk----~ 

where F is the structure factor squared times the 
Debye-Waller  factor and V c is the volume of a unit 
cell; Q = k t - k :  is the scattering vector. 

In the reference frame illustrated in Fig. 2, in which a 
certain reciprocal vector of the most probable mosaic 
blocks (~0 = ~, = 0) is in the opposite direction to the i 
axis (i.e. r = - r i ) ,  the corresponding reciprocal vector 
attached to a mosaic block, described by the horizontal 
and vertical mosaic angles ~0 and ~,, respectively, is 
expressed as 

x = - r i - r ~ 0 j  + r~,k. (A2) 

If Q1, Q2 and 03 are the Cartesian components of Q, 

Q1 = 2ki sin 0B + (y:  - Yi) klcos 0~, 

Concluding remarks 

The general method presented in § 2 may be applied 
in analyzing the multiple-scattering effects for any 
scattering cross section and for any sample geometry. 
In the particular case of elastic coherent scattering it 
closely parallels that of Werner & Arrott  (1965). 

In any case, when single crystals are used as samples 
in neutron-diffraction experiments, the calculation 

Q2 = k1(Yt + Y:) sin On, 

Q3 = k,(,~l- r~:), 

from (,41) and (,42), 

k: = k t = kt[ 1 + (Yi -  ~o) cot On], 

y:  = 2q~- Yi, 

fly = fii + 2 ~, sin 0 B. 

(a3) 

(A4) 

(,45) 
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The elastic-coherent-scattering cross section of 
mosaic crystals is found by averaging (A 1) with respect 
to the mosaic block distribution, i.e. 

d/an 
dk¢ = f d/~m'dk¢ wn(tP)Wv(~) dip dv/. 

Hence, when the distribution functions wn(~o ) and 
Wv(~) are Gaussians, 

WH(~O ) = (11 V/~rln) exp ( -  tp2/2r/2) 

and 

Wv(~) = (1 /V/~/v)  exp ( -  ~2/2r/2v), 

the scattering cross section becomes 

dl.tn Qc 1 1 

dk/.- ~//2~-r/n k 2 V/~r/vlsin OBI 

x exp [ (Y(+ y,)2] [ ( j ,  _ ~__:~ ] 
8rfn ] exp k 8r/2sin20n] 

x J(k, k / ) J ( Y :  ?, + 2 k i - k '  On) 
- - tan , 

kl 

(A6) 

where 

(2~)alFI 2 
QC ~ 2 3 V c kj I sin 20B I" (A 7) 

Qc is proportional to the total macroscopic elastic- 
coherent-scattering cross section of single crystals. So, 
for a perfect crystal 

lunv= Qe3(O, 

while for a mosaic crystal 

lUn= Qewu(O, (A8) 

where 

k i - k !  
~=Yi - - t a n 0  n . (A9) 

kl 

A P P E N D I X  B 

The unsymmetrical  transmission case 

From (39) we can deduce the recurrence relation 
1/ It t 

g2j + t(u) = f du' e-U' f du" e u'' Y2j_ I(U") 
O 0 

(B1) 

and 

Yl(U) = 1 - e -u. 

We try to find for (B1) solutions of the form 

Y 2 j  + l(u) = P j(u) e -u + Q j(u), 

where Pj(u) and Qj(u) are polynomials as in (28). 
Introduction of these into (B 1), after integration, results 
in the following recurrence relations for the coefficients: 

J-1 J--I 

AJo = -  y. AJm-lm! + ~_. (--1)mB~-lml; 
m=O m=O 

j-t ( i + m - 1 ) l  
AJ/ E j - i  = ~ A i + m _  1 

m=O i! 
( i=  1, 2 , . . . ) ;  

j-1 j-1 
Bg= y A~-lml - ~, (-1)mBSm-~ml; 

m=O m=O 

j - I  
(_ lya( i  + m -  1)! j_~ B[ = Z - -  B l + m - l "  

m=o i! 

From the above equations we find, by complete 
induction, the following relations: 

(2 j - -  i)! 
a~= (--1) j+l 

i ! ( j - -  /)! j ! ;  

BI=(- ly - '  
(2j-O~ 

~!(J- O! fl 
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